African Bankers’ Carbon Finance and Investment Forum

Plenary 3: Introducing the Clean Development Mechanism (CDM) through Case Studies by Successful Investors & Project Developers

Jonathan Curren, Managing Director, Camco South Africa
04 November 2010
DBSA, Midrand, South Africa
Presentation Outline

• Camco
• UNFCCC, Kyoto Protocol, CDM project cycle and process
• Current CDM status – overview, number of registered projects, tCO2e registered, registered projects (by sector, region and country)
• Case studies
• Conclusions
Camco

• A leading international centre of expertise in the field of sustainable energy and climate change:
  − Advisory services, carbon, investments
  − 20-year legacy
  − Extensive experience throughout Africa
  − Listed on the London Stock Exchange
  − Over 240 staff worldwide, operating out of 15 offices
  − Across 11 countries – Austria, Bulgaria, China, Kenya, Malaysia, Russia, South Africa, Tanzania, UK, USA, Vietnam
UNFCCC, Kyoto Protocol, Kyoto Mechanisms - context and history

- 1992 UNFCCC adopted 194 parties
- COP 3 - Kyoto 1997 – international watershed
- Evolution of EU ETS from January 2005
- COP15 Copenhagen – Copenhagen Accord
- COP 17 South Africa
- Kyoto Mechanisms (191 participating countries to date):
  - Flexible mechanisms – to assist in achieving emissions reduction targets: Joint Implementation (JI), CDM, Emissions Trading
  - Annex I Countries (developed) can participate in all three, Non-Annex I (developing) countries: CDM
  - CDM purpose and objective to:
    - Assist non-Annex 1 Parties in achieving sustainable development
    - Contribute to ultimate objective of the UNFCCC
    - Assist Annex 1 Parties in achieving compliance with “part” of their emissions reductions targets
    - Lead to the transfer of environmentally safe and sound technology and know-how
CDM project cycle and process

A SIMPLIFIED CDM PROJECT FLOW - THE PROJECT DEVELOPER'S PERSPECTIVE

- Identification of project and development of project concept note
- Quantification of GHG benefit and development of Project Design Document
  - Includes:
    - Set project & baseline boundaries
    - Define baseline scenario and additionality
    - Set baseline emission level and crediting period
    - Calculate baseline emissions
    - Calculate project emissions
    - Adjust for leakage
    - Adjust for risk

- Validation of Project According to Project Design Document
- Possible review by the CDM Executive Board
- Submission of validation reports and Project Design Document
- Registration with the CDM
- Project implementation and monitoring
- Verification and certification
  - Possible review by the CDM Executive Board
  - Issuance of CERs to project developers

- Host country approval
- Host Government (National Authority)
- Operational Entity
- CDM Executive Board
- Project developer
- Operational Entity
- CDM Executive Board

Source: Embassy of Denmark, Pretoria, accessed online at http://www.ambpretoria.um.dk/en
Current CDM status – overview

Accumulated number of projects submitted for validation & registered projects

Source: UNEP Risoe Centre, 2010
## Current CDM status – overview

<table>
<thead>
<tr>
<th>Total in the CDM Pipeline</th>
<th>Number of small-scale</th>
<th>Number of full scale</th>
<th>Number of all projects</th>
<th>kCERs</th>
<th>2012 kCERs</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Latin America</strong></td>
<td>394 15.3%</td>
<td>495 16.7%</td>
<td>889 16.1%</td>
<td>86,004</td>
<td>384,341</td>
</tr>
<tr>
<td><strong>Asia &amp; Pacific</strong></td>
<td>2,075 80.7%</td>
<td>2,298 77.7%</td>
<td>4,373 79.1%</td>
<td>612,468</td>
<td>2,269,174</td>
</tr>
<tr>
<td><strong>Europe and Central Asia</strong></td>
<td>24 0.9%</td>
<td>37 1.3%</td>
<td>61 1.1%</td>
<td>13,809</td>
<td>40,996</td>
</tr>
<tr>
<td><strong>Africa</strong></td>
<td>57 2.2%</td>
<td>86 2.9%</td>
<td>143 2.6%</td>
<td>29,505</td>
<td>98,956</td>
</tr>
<tr>
<td><strong>Middle-East</strong></td>
<td>20 0.8%</td>
<td>43 1.5%</td>
<td>63 1.1%</td>
<td>10,011</td>
<td>34,505</td>
</tr>
<tr>
<td><strong>For all projects</strong></td>
<td>2,570 100.0%</td>
<td>2,959 100.0%</td>
<td>5,529 100%</td>
<td>751,796</td>
<td>2,827,972</td>
</tr>
</tbody>
</table>

Source: *UNEP Risoe Centre, 2010*
Current CDM status – overview

Top countries by issued CERs

Source: UNEP Risoe Centre, 2010
Current CDM status – overview

Number (%) of CDM projects in each category

- Demand-side EE: 4%
- Afforestation & Reforestation: 1.0%
- Fuel switch: 2%
- Supply-side EE: 10%
- CH4 reduction & Cement & Coal mine/bed: 19%
- HFCs, PFCs & N2O reduction: 2%
- Renewables: 61%
- Transport: 0.6%

CERs issued in each sector

- Demand-side EE: 0%
- Supply-side EE: 4%
- Fuel switch: 1%
- CH4 reduction & Cement & Coal mine/bed: 6%
- Renewables: 14%
- HFCs, PFCs & N2O reduction: 74%
- Transport: 0%
- Afforestation & Reforestation: 0.0%

Source: UNEP Risoe Centre, 2010
Current CDM status – overview

Source: UNEP Risoe Centre, 2010
Case studies

1. Grid-connected wind electricity in North Africa
2. Small-scale isolated grid & national grid-connected hydro-electricity in East & Central Africa
3. Biomass-generated electricity to replace diesel in isolated rural grid in Southern Africa
### Grid-connected wind electricity in North Africa

<table>
<thead>
<tr>
<th>Project location</th>
<th>North Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Wind turbines imported from Northern Europe</td>
</tr>
<tr>
<td>Capacity</td>
<td>60MW</td>
</tr>
<tr>
<td>Project developers</td>
<td>JV between state renewable energy agency &amp; local private investors</td>
</tr>
<tr>
<td>Status of project</td>
<td>Wind farm constructed, operating since early-2009, dispatching 40,000 MWh into the grid</td>
</tr>
<tr>
<td>tCO2e displaced and CERs generated</td>
<td>Grid emission factor (GEF) ~ 700kg/MWh; Approximately 150,000 tCO2e displaced and CERs generated</td>
</tr>
</tbody>
</table>
Grid-connected wind electricity in North Africa

- **Key risks and lessons learned**
  - Low dispatch factor - Wind due to intermittency, difficult to meet same type of “base load” as hydro, biomass or fossil fuels
  - High GEF - grid-connected renewables in region / country generate high tCO2e displaced and CERs
  - Technology risk - State-of-the-art, off-the-shelf, robust, proven and reduces technological risk, easier to quantify risk for CER generation
  - Feed-in Tariffs or subsidies - no subsidies or feed-in-tariffs provided, only additional financial support for project is CERs, IPP tariff in this case is low (makes “financial additionality” easier to prove, getting CERs easier)
  - CDM risks
    - 3rd wind CDM project in area and country (1 project registered), therefore more difficult to prove that CERs necessary for project’s financial viability
    - validation over 12 months (with inflation and foreign exchange, tariff dropped 20% in that period), registration another 18 months due to delays at UNFCCC, CERs now not only essential, but, insufficient to give owners profit (same for the other 2 projects, discouraging other investors from the CDM)
    - not technological, political or financial risk that discourages investors using CDM, but “CDM risk” due to extensive delays in registration
Small-scale isolated grid & national grid-connected hydro-electricity in East & Central Africa

<table>
<thead>
<tr>
<th><strong>Project location</strong></th>
<th>East and Central Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Technology</strong></td>
<td>Hydro</td>
</tr>
<tr>
<td><strong>Capacity</strong></td>
<td>5MW (28,000 MWh per year)</td>
</tr>
<tr>
<td><strong>Project developers</strong></td>
<td>Local investors running isolated factory on diesel (project will replace diesel &amp; be connected to national grid)</td>
</tr>
<tr>
<td><strong>Status of project</strong></td>
<td>Project financed, under construction, due to be completed mid-2011</td>
</tr>
<tr>
<td><strong>tCO2e displaced and CERs generated</strong></td>
<td>GEF ~ 650kg/MWh; Approximately 20,000 tCO2e displaced and CERs generated</td>
</tr>
</tbody>
</table>
Small-scale isolated grid & national grid-connected hydro-electricity in East & Central Africa

• Key risks and lessons learned
  - Favourable policy environment – streamlined “small scale power purchase agreement” enabled project to register as an IPP & get licenses in less than 2 months
  - National utility buy-in – national utility agreed to connect to the new grid (and pay the company for connecting new consumers); purchase 100% of the electricity at a 15% premium over other IPPs (not a feed-in-tariff, but a premium price for “embedded generated” in isolated area with weak grid); provide technical assistance on design & construction of the grid; all took less than 3 months to negotiate and sign
  - CDM risks
    - took over 6 months to get LONO from DNA, for a project that will bring electricity to over 30,000 rural residents for the first time, reduce imports of diesel, reduce expenditures by the factory on diesel, improve economic development in the region, connect to the national grid to improve overall national generation
    - validation fairly straightforward (less than 6 months), project is awaiting registration because failed its first “completeness check”, at least 3 month delay (even though it is a small-scale project)
    - again, not technological, political or financial risk that discourages investors using CDM, but “CDM risk” due to extensive delays in registration
Biomass-generated electricity to replace diesel in isolated rural grid in Southern Africa

<table>
<thead>
<tr>
<th><strong>Project location</strong></th>
<th>Southern Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Technology</strong></td>
<td>Biomass steam turbines using wood waste to replace diesel generators in remote, isolated grid</td>
</tr>
<tr>
<td><strong>Capacity</strong></td>
<td>2MW</td>
</tr>
<tr>
<td><strong>Project developers</strong></td>
<td>Local biomass production company</td>
</tr>
<tr>
<td><strong>Status of project</strong></td>
<td>Biomass boilers &amp; turbines installed, connected to the existing grid (run by national electricity company), all independent diesel generators disconnected, area now 100% renewable electricity (16,000 MWh per year generation)</td>
</tr>
<tr>
<td><strong>tCO2e displaced and CERs generated</strong></td>
<td>GEF ~ 1 t/MWh, Approximately 160,000 tCO2e displaced and CERs generated</td>
</tr>
</tbody>
</table>
Biomass-generated electricity to replace diesel in isolated rural grid in Southern Africa

• Key risks and lessons learned
  − Stakeholder buy-in – project designed with close co-ordination with local community, local, & national government; investors, supported by local government leaders & MPs, made strong, compelling case to national government to get: small-scale PPA, EIA, local & national financing, regulatory approval, etc., all streamline and in place to make it happen quickly
  − Project feasibility – diesel generation become financially & technically unsustainable for the national utility in this isolated, though economically important, area; private owners of ag-processing, fisheries, tourism and commerce purchased & installed own diesel generators because national utility could not provide sufficient supply (cost of generation was close to US$ 0.50/kWh, over 7 times the national tariff)
  − CDM risks – DNA engaged from project start, well written PDD meant DOE could validate project in 2 months, additionality arguments supported by all government bodies, project to CDM EB on small-scale “fast track”, project should be generating CERs within 8 months of registration request
Conclusion and lessons learned from case studies

• Project feasibility:
  - Project participants (developers / investors) must have technically, technologically, financially & politically sound projects – they must do their homework
  - CDM component must be designed to specifications of CDM EB, UNFCCC
  - African CDM projects smaller than India, China, Brazil, and are complicated by a variety of factors that have always discouraged direct foreign investment
  - UNFCCC, EB, need to differentiate small-scale projects in LDCs, & streamline & simplify the process

• Stakeholder engagement and buy-in:
  - Government must understand CDM, to mobilize all government resources to co-ordinate & make it happen, government must have awareness of CDM & capacity to understand & support it (with institutional support lined up - DNA & other key agencies)
  - International partners (donors, international development finance, NGOs, etc.) must work with governments and project participants to build capacity in DNAs, awareness in government and, most fundamentally, confidence in the private sector to make CDM work
Camco South Africa
T: +27 (0)11 253 3400
M: +27 (0)79 543 1899
E: jonathan.curren@camcoglobal.com