

NET-ZERO ASSET OWNER ALLIANCE

Carbon Removal Technologies - Carbon Direct webinar

13/06/22

LAND TO THE

The core arithmetic of net-zero is harsh and unforgiving: We are failing & We're out of time

51 billion tons -> 0 in 30 years is really, really hard

Energy is most of the challenge, and we've never used less energy every

Source: Center on Global Energy Policy; Smil, Energy Transitions; ExxonMobil Energy Outlook 2018

For 1.5 °C, the math is 50% reduction in 10 years

The core arithmetic of net-zero is clarifying:

All sectors All approaches

Only one way to stabilize climate: net-zero everywhere

- Any emissions anywhere add to atmospheric CO2 concentration
- Every year of delay makes problem worse
- We don't have solutions for about 50% of the portfolio

For net zero: CO₂emissions - CO₂removals = 0

- Any residual emissions must be balanced by removal
- Likely need 10 Gt/y CO2 removal by 2050
- Any delay or failure requires more CO₂ removal

Carbon from the earth must be returned to the earth

- Natural systems must return to balance
- Biosphere has limited capacity
- Risk of return is getting worse

*CO*₂ return to the geosphere anchors the net-zero global economy

Required CO_2 storage & removal from air by ~ 2060

Source: CDR Primer (Wilcox et al., 2021, after UNEP 2017)

Carbon Management: Pillar of the Net-Zero Economy

Dr. S. Julio Friedmann Chief Scientist & Chief Carbon Wrangler Temple Shir Shalom, Sonoma, June 2022

Many forms of CO₂ removal – some issues remain

Different degrees of sureness (science)

Different technical readiness & maturity

Different risks (additionality, reversal)

Different duration

Different cost

A mixed portfolio will perform best on cost, risk, and performance

All CO2 removal approaches have benefits & challenges

Direct Air Capture of Carbon Dioxide

Draft for Comment

October 2018

9 https://www.icef-forum.org/roadmap/

Orca: The world's largest direct air capture plant Hellisheide facility Reykjavic, Iceland Climeworks + CarbFix

Climewo

The world's largest direct air capture plant Does the CO₂ work of 200,000 trees with 0.1% of the land

The largest project announced: Carbon Engineering, 1point 5 & Occidental Petroleum 1,000,000 tons/year (CO₂ enhanced oil recovery + saline storage)

DACCS has no resource constraint and "uniform" costs for application Cost curve is flat, so cost should vary chiefly as a function of deployment

Previous and expected DAC cost estimates

Levelized \$2018/metric ton of carbon removed from the atmosphere

Current and projected cost of CO₂ capture using DAC 30-year levelized \$2018/metric ton

Carbon mineralization turns CO₂ to stone

- Natural process in which CO₂ becomes bound in rocks as a solid mineral.
- Happens naturally at a slow rate as certain rocks are exposed to carbon dioxide, permanently removing roughly 0.3 Gt of CO₂ from the atmosphere each year

Rocks rich in calcium or magnesium

Carbon dioxide

Carbonate minerals

Natural process: ongoing, low temperature C-mineralization in Oman

Carbon mineralization is an important pathway for CO₂ removal

Many gigatons/y of CO₂ removal potential

Two broad approaches:

- Injecting CO₂-rich fluids into rock formations deep underground (in situ mineralization)
- Exposing crushed rocks on the Earth's surface to CO₂-bearing gases (ex situ/surface mineralization)

ICEF Roadmap, 2021

Bioenergy can remove CO₂ when paired with CCS

Inputs: wastes, residues, crops Outputs: power, hydrogen, fuel & CO₂

Biohydrogen can provide clean energy & remove CO₂

CA is pursuing ambitions net-zero program Innovative approaches are at the heart of the roadmap

https://www-gs.llnl.gov/content/assets/docs/energy/Getting_to_Neutral.pdf

For CA net-zero 125 Mt/y: 70% involves bio-H₂ + CCS for fuel

Many paths, large range of costs, all options required

* Costs shown are for a hypothetical 1 MtCO₂/y facility. Total removal capacity in 2030 was not explicitly analyzed, but is essentially unlimited.

Lawrence Livermore Natl. Lab, 2022

Carbon management saves time, money & reduces risk

CO₂ recycling needs large markets to be climate relevant

Often called Carbon-to-Value (C2V)

E-fuels: direct electrical conversion of CO₂ & water to fuel

Inputs

- Zero-C electricity
- CO₂
- Water (or H₂)

Products

- Fuels (jet-A, natural gas)
- Chemicals (methanol)

Benefits

- Existing infrastructure
- Displaces carbon-intensive fuels
- Domestic production

Source: Making Mission Possible (ETC 2020)

Investment and the market: These few precepts keep in mind

The market is a mess

Renewable energy and avoided deforestation projects: 80%

Average prices remain low: \$3-4/tCO₂ unlikely to motivate significant abatement

< 3% of credits on the market are CO_2 removals. The rest are avoided/reduced or mixed projects (13%)

A glut of old surplus of credits: ~7 years vintage could absorb offset demand for several years

No accepted standards, protocols, or regulators

VCM is anticipated to grow significantly, creating real opportunity for suppliers & other market makers

Sources:

Barbara Haya, Micah Elias, Ivy So. (2021, March 29). Voluntary Registry Offsets Database Pre-release Version, Berkeley Carbon Trading Project, Center for Environmental Public Policy, University of California, Berkeley. Retrieved from: <u>https://gspp.berkeley.edu/faculty-and-impact/centers/cepp/projects/berkeley-carbon-trading-project/offsets-database</u> Eli Mitchell-Larson and Tim Bushman. (April 2021) Carbon Direct Commentary: Release of the Voluntary Registry Offsets Database – see here.

The market is a mess

nature climate change

Renewable energy certificates threaten the integrity of corporate science-based targets

MIT Technology Review

A nonprofit promised to preserve wildlife. Then it made millions claiming it could cut down trees

Big Oil's Net-Zero Plans Show the Hard Limits of Carbon Offsets

The Real Trees Delivering Fake Corporate Climate Progress

North American farmers profit as consumers pressure food business to go green

MSFT + CD: Criteria for high quality CDR

Criteria for high-quality carbon dioxide removal

Additionality (with baselines) Accounting methodology explained Assess harms & benefits Define and explain durability Equity & justice assessed Avoid leakage Monitoring, reporting, verification (MRV)

A mixed portfolio will perform best on cost, risk, and performance

Microsoft and Carbon Direct, 2022

A mixed portfolio: lowest cost & risk

Different degrees of sureness (science) Different technical readiness & maturity Different risks (additionality, reversal) Different duration Different cost

A mixed portfolio will perform best on cost, risk, and performance

Microsoft showed this in 2021

Joppa et al., 2022

Two Illustrative portfolios of CO₂ removal

Mixed portfolio: ~\$50/ton; 300 year durability

<mark>5%</mark> 1(2% 0%	BECCS Biomass Burial	/Marine Blue carbon	2% 4% 4%	Ocean Alkalinity Enhancement Biomass burial
1.	7%	[\] Engineered wood products Biochar		20%	Direct Air Capture
3	3%	AF/RF		20%	Mineralization
				20%	Biochar
3	3%	IFM 75% 40-50 year durability 25% more than 100 year		30%	BECCS 100% more than 100 year Most "ex ante" purchases

Innovation focus: ~\$260/ton; 5000 year durability

Policy is changing fast: Focus on viable projects today

Scaling is chiefly a function of policy

Engineered CDR faces no global resource limits

- 10,000-20,000 Gt CO₂ storage capacity for DAC & BECCS. 50,000,000 Gt for mineralization
- 2.5-5.5 Gt per year residual (sustainable) biomass
- Earth abundant materials; well established supply chains

Cost is a function of policy first, technology second

- Deployment lowers costs AND encourages efficiency & innovation
- True for LEDs, solar, wind, batteries, semi-conductors....

We know what to do

- 0.1 Gt by 2030 (mixed portfolio)
- 1 Gt by 2040 (mixed portfolio)
- 10 Gt by 2050 (mixed portfolio)

Many policy approaches could accelerate CDR

Incentives

- Revenue enhancements
- Tax breaks
- Other capital treatments (first loss, acceleated depreciation, etc.)

Regulation

- Compliance
- Mandates
- Standards & Protocols

Other policy

- Grants (e.g., pilots & demos)
- Innovation
- Infrastructure

OECD Countries pursuing all these policies

Incentives

- Revenue enhancements: UK (CFD)
- Tax breaks: **45Q today (\$35/t)**; pending enhancements (\$180/t)
- Other capital treatments: US (DAC Prize)

Regulation

- Compliance: California (LCFS); US (Clean power standards)
- Mandates: Maybe Saudi Arabia, China, UAE
- Standards & Protocols: EU (Sust. Carbon Cycles certification); ICAO (CORSIA updates); IC-VCM

Other policy

- Procurement: UK (5M tons by 2025); EU (5M tons by 2030); US (FCRLA; CREST Act; NY & CA)
- Grants (e.g., pilots & demos): US (DAC Hubs); CREST Act
- Innovation: US, UK, EU, JAP, CHI, GER, CAN
- Infrastructure: EU, US, SWE, DEN, ICE, CAN, UK...

The US has legislated much, with more to come

U.S. Tax Code, Section 45Q

- Today: Saline Fm. storage \$50/t; Use \$35/t; DAC \$35/t
- Under negotiation: Saline Fm. storage \$85/t; Use \$60/t; DAC \$180/t

U.S. Infrastructure Investment and Jobs Act

- \$7.49 billion for Fossil Energy and Carbon Management,
 - \$3.5 billion for DAC Hubs
 - **~\$310 million** for CO2U Program
 - **\$2 billion** for CO2 storage site qualification
- **\$2.1 billion** for the CO2 Transportation Infrastructure Finance and Innovation Program
- **\$8 billion** for Hydrogen Hubs; **\$2.85 billion** for National Forests; **\$696 million** for Wildfire Mgmt.

Other

- CA LCFS (\$200-150/t) greater stringency expected (i.e., 40% reduction by 2030; net-zero by 2045)
- **OR** also LCFS
- WA Cap & invest program + LCFS design

The US has legislated much, with more to come

U.S. Tax Code, Section 45X

- Clean hydrogen at \$3/kg includes bio-hydrogen with CCS (BECCS)
- Other federal bills
 - CREST Act
 - New R&D provisions for Bio-oil; BiCRS; Soils; C Mineralization; Oceans; Geol. Assessments
 - **Reverse Auction:** \$20M in 2023 & 2024 ramp to \$60M in 2026
 - Federal Carbon Removal Leadership Act: procurement schedule ramping to \$50M/y in 2030s

States

- **CA; NY –** Independent procurement bills
- WA LCFS design

Early action by companies

XPRIZE

- NRG-COSIA: CO₂ utilization prize
- Musk: \$100M CO₂ removal prize

CDR purchases

- Airbus & SK: 100,000 t/y DAC (1point5)
- Microsoft, Stripe, Alphabet, Salesforce: \$2 billion commitment
- Net zero commitments: tacit CO₂ removal commitments

First Movers Coalition: new CO₂ removal plank announced at Davos

- Commit 50,000 tons or \$25 million on CDR by 2030
- 1000-year standard with MRV (all engineered)
- Frontier Initiative/SouthPole Facility/Breakthrough Energy
- Carbon Direct implementation partner

There's much to do

Tech, markets and policy are changing rapidly

Talk smart

- Science means "All of the Above" (beyond moral hazard)
- Engage communities proactively
- Seek political compromise nationally, locally, within sectors

Set standards

- Full life-cycle accounting don't tilt the table
- Seek to align standards internationally from the outset

Encourage early action

- Fist Movers Coalition
- Develop contracting practice, supply chains, infrastructure
- First loss policies would help de-risk projects

Now is the time to invest and engage

Appendix: Extra Slides Just in Case

In CCUS CO₂ is separated, concentrated & injected deep underground

Capture: chemical or physical separation of CO₂ from dilute sources

- Power plants
- Industrial sites
- Air & Oceans (Direct Air Capture)

Storage: > 1km depth

- Porous & permeable units
- Large capacity
- Good seals and cap rock

Two main targets

- Saline formations (>2800 Gtons in N. Am.)
- Depleted oil & gas fields (potential for EOR)

Est. storage capacity worldwide: 10-20 trillion tons 22 Operating facilities: 65 in adv. planning or construction CCUS is a mature, cost effective technology for CO₂ reduction & removal

What will it really take

Ambition + humility + investment

Net-Zero Asset Owner Alliance

